Frequency-Constrained Resilient Scheduling of Microgrid: A Distributionally Robust Approach
نویسندگان
چکیده
In order to prevent the potential frequency instability due high Power Electronics (PE) penetration under an unintentional islanding event, this paper presents a novel microgrid scheduling approach which includes system dynamics as well uncertainty associated with renewable energy resources and load. Synthetic Inertia (SI) control is applied regulating active power output of Inverter-Based Generators (IBGs) support post-islanding evaluation. The noncritical load shedding explicitly modeled based on distributionally robust formulation ensure resilient operation during events. resulted constraints are derived analytically reformulated into Second-Order Cone (SOC) form, further incorporated model, enabling optimal services provision from micorgrid perspective. With SOC relaxation AC flow constraints, overall problem constructed mixed-integer Programming (MISOCP). effectiveness proposed model demonstrated modified IEEE 14-bus system.
منابع مشابه
Distributionally robust chance-constrained linear programs
In this paper, we discuss linear programs in which the data that specify the constraints are subject to random uncertainty. A usual approach in this setting is to enforce the constraints up to a given level of probability. We show that for a wide class of probability distributions (i.e. radial distributions) on the data, the probability constraints can be explicitly converted into convex second...
متن کاملKullback-Leibler Divergence Constrained Distributionally Robust Optimization
In this paper we study distributionally robust optimization (DRO) problems where the ambiguity set of the probability distribution is defined by the Kullback-Leibler (KL) divergence. We consider DRO problems where the ambiguity is in the objective function, which takes a form of an expectation, and show that the resulted minimax DRO problems can be formulated as a one-layer convex minimization ...
متن کاملDistributionally Robust Chance-Constrained Bin Packing
Chance-constrained bin packing problem allocates a set of items into bins and, for each bin, bounds the probability that the total weight of packed items exceeds the bin’s capacity. Different from the stochastic programming approaches relying on full distributional information of the random item weights, we assume that only the information of the mean and covariance matrix is available. Accordi...
متن کاملOn distributionally robust joint chance-constrained problems
Introduction: A chance constrained optimization problem involves constraints with stochastic data that are required to be satisfied with a pre-specified probability. When the underlying distribution of the stochastic data is not known precisely, an often used model is to require the chance constraints to hold for all distributions in a given family. Such a problem is known as a distributionally...
متن کاملOn Distributionally Robust Chance-Constrained Linear Programs1
In this paper, we discuss linear programs in which the data that specify the constraints are subject to random uncertainty. A usual approach in this setting is to enforce the constraints up to a given level of probability. We show that, for a wide class of probability distributions (namely, radial distributions) on the data, the probability constraints can be converted explicitly into convex se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Smart Grid
سال: 2021
ISSN: ['1949-3053', '1949-3061']
DOI: https://doi.org/10.1109/tsg.2021.3095363